Skip to content


Find below selected publications relative to sucrose esters or molecular gels.

Publications relative to molecular gels

Drew, E. N.; Piras, C. C.; Fitremann, J.; Smith, D. K. Chem. Commun. 2022, 58, 11115–11118.

Self-Assembled Gel Tubes, Filaments and 3D-Printing with in Situ Metal Nanoparticle Formation and Enhanced Stem Cell Growth – Piras, C. C.; Kay, A. G.; Genever, P. G.; Fitremann, J.; Smith, D. K. Chemical Science. 2022, 13, 1972–1981.

3D Printing of Biocompatible Low Molecular Weight Gels: Imbricated Structures with Sacrificial and Persistent N-Alkyl-d-Galactonamides – Andriamiseza, F.; Bordignon, D.; Payré, B.; Vaysse, L.; Fitremann, J. Journal of Colloid and Interface Science 2022, 617, 156–170.

Wet Spinning of a Library of Carbohydrate Low Molecular Weight Gels – Bordignon, D.; Lonetti, B.; Coudret, C.; Roblin, P.; Joseph, P.; Malaquin, L.; Chalard, A.; Fitremann, J.    Journal of Colloid and Interface Science 2021, 603, 333–343.

3D printing of a biocompatible low molecular weight supramolecular hydrogel by dimethylsulfoxide – water solvent exchange – Chalard, A.; Mauduit, M. ; Souleille, S.; Joseph, P.; Malaquin, L.; Fitremann, J. Additive Manufacturing, 2020, 33, 101162.

Wet Spinning and Radial Self-Assembly of a Carbohydrate Low Molecular Weight Gelator into Well Organized Hydrogel Filaments
– A. Chalard, P. Joseph, S. Souleille, B. Lonetti, N. Saffon-Merceron, I. Loubinoux, L. Vaysse, L. Malaquin, J. Fitremann, Nanoscale, 2019, 11 (32), 15043–15056. 

Simple synthetic molecular hydrogels from self-assembling alkylgalactonamides as scaffold for 3D neuronal cell growth
– A. Chalard, L. Vaysse, P. Joseph, L. Malaquin, S.Souleille, B.
Lonetti, J.-C. Sol, I. Loubinoux, J. Fitremann, ACS Applied Materials
and Interfaces, 2018, 10, 17004-17017.

A Shear-Induced Network of Aligned Wormlike Micelles in a Sugar-Based Molecular Gel. From Gelation to Biocompatibility Assays
– J. Fitremann, B. Lonetti, E. Fratini, I. Fabing, B. Payré, C. Boulé,
I. Loubinoux, L. Vaysse, L. Oriol, Journal of Colloid and Interface
Science, 2017, 504, 721–730.

Photoresponsive Supramolecular Gels Based on Amphiphiles with Azobenzene and Maltose or Polyethyleneglycol Polar Head – Clemente, M. J.; Tejedor, R. M.; Romero, P.; Fitremann, J.; Oriol, L. New J. Chem. 2015, 39, 4009–4019.

Maltose-based gelators having azobenzene as light-sensitive unit – M.J. Clemente, R.M. Tejedor, P. Romero, J. Fitremann, L. Oriol, RSC Advances, 2012, 2, 11419–1143.

Supramolecular hydrogels based on glycoamphiphiles: effect of the disaccharide polar head – M.J. Clemente, P. Romero, J.L. Serrano, J. Fitremann, L. Oriol, Chemistry of Materials, 2012, 24, 3847−3858.

Synthesis and characterization of maltose-based amphiphiles as supramolecular hydrogelators – M.J. Clemente, J. Fitremann, M. Mauzac, J.L. Serrano, L. Oriol, Langmuir 2011, 27, 15236-15247. 

Synthesis and gelling properties of N-Palmitoyl-L-phenylalanine sucrose esters – J. Fitremann, A. Bouchu, Y. Queneau, Langmuir, 2003, 19, 9981-9983

Publications relative to Sucrose esters

  1. Winsor Behaviour of Sucrose Fatty Acid Esters: Choice of the Cosurfactant and Effect of the Surfactant Composition – A.-S. Muller, J. Gagnaire (Fitremann), Y. Queneau, M. Karaoglanian, J.-P. Maitre, A. Bouchu, Colloids and Surfaces A, Physicochemical and Engineering Aspects, 2002, (203), 55-66.
  2. PFGSE-NMR Study of the Self-Diffusion of Sucrose Fatty Acid Monoesters in Water – V. Molinier, B. Fenet, J. Fitremann, A. Bouchu, Y. Queneau,  J. Colloid Interface Science, 2005, 286, 360-368.
  3. Self-organizing properties of monosubstituted sucrose fatty acid esters: the effects of chain length and unsaturation – V. Molinier, P.J.J. Kouwer, J. Fitremann, A. Bouchu, G. Mackenzie, Y. Queneau, J.W. Goodby, Chem. Eur. J., 2006, 12, 3547-3557.
  4. Concentration measurements of sucrose and sugar surfactants solutions by using the 1H NMR ERETIC method – V. Molinier, B. Fenet, J. Fitremann, A. Bouchu, Y. Queneau,  Carbohydrate Research, 2006, 341, 1890-1895.
  5. Shape dependence in the formation of condensed phases exhibited by disubstituted sucrose esters – V. Molinier, P.J.J. Kouwer, J. Fitremann, A. Bouchu, G. Mackenzie, Y. Queneau, J.W. Goodby, Chem. Eur. J., 2007, 13(6), 1763-1775
  6. Co-Melting of Solid Sucrose and Multivalent Cations Soaps for Solvent-free Synthesis of Sucrose Esters – J. Fitremann, Y.Queneau, J.-P. Maître, A. Bouchu, Tetrahedron Letters, 2007, 48, 4111–4114.
  7. Thermotropic liquid crystalline glycolipids – J. W. Goodby, V. Görtz, S. J. Cowling, G. Mackenzie, P. Martin, D. Plusquellec, T. Benvegnu, P. Boullanger, D. Lafont, Y. Queneau, S. Chambert and J. Fitremann, Chem Soc. Rev., 2007, 36 (12),  1971-2032
  8. Sucrose Chemistry and Applications of Sucrochemicals, Advances in Carbohydrate Chemistry and Biochemistry – Queneau, S. Jarosz, B. Lewandowski, J. Fitremann, 2007, 61, 217-292
  9. Double-walled carbon nanotube dispersion via surfactant substitution – V. Datsyuk, P. Landois, J. Fitremann, A. Peigney, A.-M. Galibert, B. Soula, and E. Flahaut, J. Mater. Chem., 2009, 19, 2729–2736.
  10. Calcium Phosphate Bone Cements Including Sugar Surfactants: Part One – Porosity, Setting Times and Compressive Strength – A. Bercier, S. Gonçalves, O. Lignon, J.  Fitremann, Materials, 2010, 3, 4695-4709.
  11. Calcium Phosphate Bone Cements Including Sugar Surfactants: Part Two — Injectability, Adhesive Properties and Biocompatibility – A. Bercier, S. Gonçalves, H.  Autefage, F. Briand-Mesange, O. Lignon, J. Fitremann, Materials, 2010, 3, 5111-5129.